Dirichlet’s integral formula and the evaluation of the phase volume
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The phase volume in the microcanonical ensemble is not easily obtained even in
the cases where the Hamiltonian function is separable. Dirichlet’s integral
formula constitutes a consistent method to evaluate the phase volume for simple
situations. Several examples where Dirichlet’s integral formula is used to obtain

the phase volume are presented in this paper.

I. INTRODUCTION

Classical statistical mechanics usually starts with a
system at constant energy (£), number of particles (V) and
external parameter (ay ). A very significant property of the
microcanonical ensemble is the phase volume ®(E,ay,N)
which is defined as!:2

®(E,ar,N) = f f dqdp,

H(p.q.ax) < E. (1
The phase volume is the volume in I" space enclosed by
the surface H(p.q.ax) = E. H(p,q,ax) is the Hamiltonian
function of the system, p and g are the set of generalized
momenta and coordinates. The phase volume is a rather
geometric quantity, which only receives its physical sig-
nificance in connection with the microcanonical ensemble
because the entropy may be defined? as

S =kind. (2)

Equation (2) presents the entropy as a function of the
independent variables E,ai,/N. It constitutes the basic
equation of the entropic representation. In practice, ¢ is not
easily evaluated even in the case of simple systems. Besides
the theoretical importance of the microcanonical ensemble,
the evaluation of ® is rather inconvenient for explicit ap-
plications.

Even in simple cases where the Hamiltonian function is
separable (independent particles) textbooks do not offer a
consistent method of solving Eq. (1), but different and un-
related methods which vary from case to case.

The use of Dirichlet’s integral formula has been suc-
cessful in the evaluation of certain kinds of multiple inte-
grals (areas, volumes, moments of inertia, etc.) over certain
domains.

In this paper Dirichlet’s integral formula is used consis-
tently to evaluate the phase volume for different simple
situations. In the examples presented in this paper no in-
tegrations need to be worked, just a table of I" functions is
necessary.

I1. DIRICHLET’S INTEGRAL FORMULA

[t is well known* that the integral
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I—f ff(t1+t2+ et 1)t

X 1§27 et drdty < dty,,  (3)

where fis continuous, ¢, > 0 (r = 1,2, . . . ,n), and the in-
tegration is performed over all positive values of the vari-
ables such that > /-, ¢; < 1, is given by
F(a])F(a2)“'F(an) f‘ Sa—1
e=ldr. (4
ey +ay+---+ a,) of(T)T @
We are interested in the case where f(7) = 1. Then for-
mula (4) adopts the form
Fa)P(ay) - T(a,) 1
. (5)
F(Ol] + 0(2+"-+ (1,,) Za
Taking into account the recurrence relation for I' func-
tions

I =

I =

I'a+1) =al(a), a >0, (6)
Eq. (5) may be written
I=T(a)Naz)---T(a,)/ Tl +ar+---+ a, +1).
(7)
l?or future examples we shall need to evaluate the inte-
gra

IR = f PP ft‘]”_]t‘z"z_] PPN
Xdtdty---dt, (8)

over the set of all the positive values of the variables such
that

anp—1
Ly

(t1/b1)P1 + (12/b)Br+ « o+ (tu/br)Pr < 1, (9)

where it is assumed that ¢;,b;,0; are positive. By means of
a change of variable of the form

(ti/bi)fi=r;, (i=12,--+,n), (10)
Eq. (8) may be written
bﬂlb baf

Ir=
ﬁxﬁz
Pl ldp dry o o o dry,

f f a|/ﬂl 1 az/ﬂz 1,
(11)

where the integration is performed over the set of all positive
values of the variables such thatry +ry+---+r, < 1.
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The integration in Eq. (11) has been previously evaluated
[see Eq. (7)] so it may be written
b?lng cen bzn
B1B2---Bn
F(al/BI)F(OQ/BZ) ce I‘(C\’-n/ﬁn) . (12)
P(al/ﬁl + 0(;)/32 +.-- 4 an/Bn + 1)
If the integration is performed over the set of positive and
negative values of the variables such that ry +ry + -+
r. < 1, by symmetry considerations, the integration may

be evaluated as 2" times the result of integrating over the
first hyperoctant, i.e., 2" times Eq. (12).

1R=

III. EXAMPLES

A set of examples is presented where the phase volume
is obtained by means of Dirichlet’s integral formula. In
these examples the Hamiltonian function is separable and
Dirichlet’s integral formula constitutes a consistent method
to obtain the phase volume.

A. Classical ideal gas

A N-particle ideal gas is enclosed in a three-dimension-
al box of volume V, m is the mass of each particle. The total
energy of the gas is £. The Hamiltonian function is

H= z§'+E (13)
i=1

where
E = 0 inside the box
P e in the box walls

The phase volume is

b [ fdam [ [ dpieeedom

0<HZ<E. | (14)

When the position coordinates are integrated out, Eq
(14) yields

= VNf"'fdpl"‘dPSN,

pi
0< <
Lise 1s)

Equation (15) is of the same form as Eq. (8) over the

$ = (23N‘+3N2).(2m1E)3N'/2(2m2E)3N2/2VN1+N2[F(1/2)]3N‘+3N2{23N'+3N2[(3N1 + 3N2)/2 + 1]}—1'

As the integration in Eq. (19) is over the set of positive
and negative values of generalized momenta a factor
23M+3N2 s present in Eq. (21).

Usually is supposed that (3N, + 3N;)/2 is an integer
because 3(V; + N,)/2 is a very large number, and so Eq.
(21) gives

VNN 3N 2y N2 () r E)3 N1 V)2

[3(N + Ny)/2]!

(22)

C. Monodimensional ultrarelativistic gas

In a N-particle monodimensional ultrarelativistic gas,
the particle energy is proportional to the lincar momentum
modulus, i.e., e; = ¢'| pi|. The particles are restricted to move
between x = 0 and x = L. The total energy of the system
is £ and the Hamiltonian function is \
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domain defined by Eq. (9). When parameters are identified,
itresultsine; = 1,4, = p;, B; = 2, b = 2mE)'2, (i =
1,2,...,3N) and so, the phase volume is

_ 23V N@mE)N2T(1/2))3N
B¥T(3N/2 +1) ’

(16)

the 23N factor in Eq. (16) accounts for the fact that the
integration in Eq. (15) is performed over the set of positive
and negative values of the generalized momenta.

Usually is assumed that 3/V/2 + ] is an integer because
Nis very large, and so Eq. (16) may be written.

_ VNQrmE)N?

(3N/2)! (17)

B. Mixture of two ideal gases

The gas mixture is enclosed in a three-dimensional box
of volume V. N 1 and IV, are the number of particles of each
molecular species.

In this system the Hamlltoman functlon is

H%‘ 2445, (18)
S2my =12my
where
£ = {O inside the box
P © in the box walls

and m; and m, are the molecular masses of the species 1
and 2.

The phase volume is

ING 3N
&= VN1+N2f... f 11 dp: depj- (19)
i J
Integration in Eq. (19) is over the domain defined by

3% pi 2 3N, P 251‘
i< (2m\E)'/? =1 \(2myE)'/2

When the parameters in Eqgs. (8) and (9) are identified,
they are ay = 1, ty = p;, Bx = 2, by = QmE)'/2, k =
AN a= 1Lt =pj, B =2, b = 2maE)/% k

(20)

= 3N| +1,...,3N; + 3Nz and the phase volume is given
as )
(21
N
H=Y clp)| +E, (23)
i=1
where
£ = 0, 0<g=<L
4 @, q= (), qg= L
The phase volume is
$ = f "’qul"'qudp]"'de,
0= Teclp| <E, (24)

when the position coordinates are integrated out, Eq. (24)
yields
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CD:LNI...fdpl...de,

0<Yclpl| <E. (25)

After identifying the parameters in Egs. (8) and (9), «; =
1,t;=pi,Bi=1,b;=E/c,i=1,2,...,Nisobtained, and
Eq. (20) may be written

= 2NLN(E/c )N [T ()Y

¢ T(N+ 1)

(26)

The 2/ factor in Eq. (26) accounts for the fact that the
integration is performed over the set of positive and negative
values of the generalized momenta.

Equation (26) finally takes the following expression:

- (QLE/c)N

¢
N!

(27)

D. Three-dimensional ultrarelativistic gas

A N-particle ultrarelativistic gas is enclosed in a three-
dimensional box of volume V. The particle energy is pro-
portional to the linear momentum modulus, i.e., ¢; = c|p;|
= c¢p;. The total energy of the system is E and the Hamil-
tonian function is

z

H=3% cp;+E,, (28)
i=1
where
E = 0 inside the box
P © in the box walls.

The phaée volume is given as

d= VNf e f (dplxdplydplz) e (dexdey,‘dez),

N
0= ’_=Zl cpi < E;pi = (P:zx +pi2y +P12z)1/2 (29)

Taking into account the fact that in the momentum space
of each particle the number of phase points with momentum
between p; and p; + dp; is given by 4wp?dp;, Eq. (29) may
be written

¢ = (47rV)Nf fpf---p?vdpndpz---dpzv,

N
0<% cp<E. (30)
pe

When the parameters in Egs. (8) and (9) are identified, it
resultsine; =3, 4, =p;, 20,8, =1, b = Elc, i =
1,2,...,N) and finally

o = BTNNERN

3N GD

E. Monodimensional harmonic oscillators

The Hamiltonian function of a system composed of N
monodimensional harmonic oscillators is

mw?2q?
2 b
where m is the mass and w the frequency.
The phase volume is given as

N p?
H=52l 4

32
i=12m (32)
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CI)=f"'qul"'qudpl"'de;

0<HZ<E,

where integration is over the domain defined by

N p’_z /212 qi 2
) T+ [rmetsms )= - 69

when the parameters in Eqgs. (8) and (9) are identified, they
are O(j = 1, tj = Di, 6] = 2, bj = (2mE)‘/2,j= 1,2, e ,N,
aj=1,t=¢q., 8 =2 b =(1/w)E/m)'2, j= N +
I,...,2N.

The phase volume is finally obtained as

N
® = (2mE/w) .
N!

F. Bidimensional harmonic oscillator

(33)

(35)

The Hamiltonian function of a bidimensional harmon-
ic oscillator is

H = (pi+p3)/2m+ mwiqi/2 + mwlq}/2, (36)

where m is the mass and w; and w; are the frequencies.
The phase volume is given by

q,=f,..qu1dq2dp1dp2.

0<HZE,
the last integration being over the domain defined by
[p1/(2mE)'72)2 + [py/(2mE)'/2]2

(37)

+( L )2+( 42 )2<1 (38)
(1/ 0 )(2E/m)'/? (1/w2)(2E/m)'72) —

Identifying the parameters in Egs. (8) and (9), in a
straightforward manner, we have
$ =272E? ) ww;. (39)
G. Monodimensional anharmonic oscillator
The Hamiltonian function of this system is
H=p22m+ Aq", n> 2,

where m is the mass and A is a constant.
The phase volume is

(I):f...qudp,

0<HZ<E,
where the domain of integration is given by

(40)

(41)

( 4 )2+( q )"<1. (42)

emey2| " \(Eayvn) =

When the parameters in Egs. (8) and (9) are identified, the

phase volume is

202mE)\2(E/ AT (1/2)T(1./n)
nI'[(3n + 2)/2n] '

¢ = (43)

H. Simple pendulum
The Hamiltonian function of a simple pendulum is
H = pZ/2mi? + mgl(1 — cosa), (44)

where the meaning of p,, m, g, |, and « is standard. The
potential energy origin has been taken in the equilibrium
position (& = 0).
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For small vibrations the Hamiltonian function will take
the foliowing form

H = p22mi? + mgla?/2. (45)
The phase volume is given as
¢ = f fdpada,
0<HZ<E, (46)

where the integration is performed over the domain defined
by

Ba 1"+ @< (47)
(2mi2E)1/2 QE/mghV?| —

When the parameters in Egs. (8) and (9) are identified, the
phase volume is
P =27E(/g)"/2 (48)

If the potential energy origin were taken as o = /2 in-
stead of o = 0, the Hamiltonian function of this system
would be given by
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H = p/2mi? — mgl(1 — a?/2), (49)

where the validity of the small amplitude approximation
has been assumed.
In this case the phase volume will be

D =27 (E’ + mgl)(1/g)"/> (50)

The different expressions for the phase volume [see Eqs.
(48) and (50)] are due to the different potential energy
origins used to evaluate the phase volume. When it is taken
into account that the difference in energy between both
potential energy levels is given by mg/, Egs. (48) and (50)
are identical because of E = E’ + mgl.
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